Developmental Differences in the Factor Structure of the Children's Depression Inventory

Bahr Weiss
Vanderbilt University

John R. Weisz
University of North Carolina at Chapel Hill

Michael Politano
College of William and Mary

Michael Carey
Medical College of Ohio

W. Michael Nelson
Xavier University

A. J. Finch
Medical University of South Carolina

The factor structure of the Children's Depression Inventory (CDI), the most widely used self-report measure of depression for children, has been studied, but we still know relatively little about how developmental differences relate to CDI structure. Here, we evaluated whether the CDI factor structure differed in large samples of clinic-referred children versus adolescents. Our results indicated real but modest differences. Both groups produced 5 first-order factors, but the composition of the factors differed somewhat for children versus adolescents. Both groups also produced a 2nd-order, general depression factor, although items loading on the factor differed somewhat for the 2 groups: For children but not adolescents, several externalizing behavior items (e.g., I never do what I am told) loaded on the general factor; in contrast, for adolescents but not children, several vegetative items (e.g., I am tired all the time) loaded on the general factor. Overall, the child-factor pattern appeared to involve fewer CDI items than did the adolescent pattern.

Childhood depression, a syndrome once believed by many to be exceedingly rare or nonexistent, is now an area of rapidly burgeoning clinical and research activity. A growing interest in the assessment of depression in children has been paralleling this development. A number of different approaches have been used to assess childhood depression, including interview and inventory reports obtained from parents and teachers, as well as behavioral observation and biological assessments (Kazdin, 1987). As some investigators (e.g., Reynolds, Anderson, & Bartell, 1985) have noted, however, self-report assessments may be particularly important when evaluating depression, given the internal, subjective nature of many affective symptoms (e.g., sadness, feelings of worthlessness or hopelessness).

A number of depression self-report instruments have been developed for use with children (see, e.g., Harter & Nowakowski, 1987; Weissman, Orvaschel, & Padian, 1980); among these, the Children's Depression Inventory (CDI; Kovacs, 1980; Kovacs, 1985) is probably the most widely used (Kazdin, 1987). The CDI was developed as a downward extension of the adult-oriented Beck Depression Inventory (BDI; Beck & Beamesderfer, 1974); in fact, many CDI items were derived from BDI items with wording changes intended to make the language age-appropriate.

The validity of the BDI and its items has been established for adult populations (see Beck, Steer, & Garbin, 1988). However, several of the symptom areas assessed by the CDI (e.g., somatic concerns, externalizing problem behaviors) may or may not be a part of a depressive syndrome for the children of the diverse developmental levels with whom the CDI has been used (see, e.g., Helsel & Matson, 1984). It has been suggested in the revised third edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-III-R; American Psychiatric Association, 1987), for instance, that depression in children may co-occur with somatic complaints, whereas in contrast, depression in adolescents may be accompanied by externalizing, "negativistic or frankly antisocial" behavior. This suggests that as part of the ongoing validation of the CDI, it will be important to assess its internal structure separately for groups at different developmental levels to determine for which groups, if any, these various symptoms are part of depression.

The research described here, portions of which were presented at the April, 1989 meeting of the Society for Research in Child Development, was supported in part by grants from the North Carolina Department of Human Resources, Division of Mental Health, Mental Retardation, and Substance Abuse Services (41626), and from the National Institute of Mental Health (R03 MH38450) to John R. Weisz.

We gratefully acknowledge the thoughtful comments of Judy Garber and Aviva Wasserman on earlier drafts of this article.

Correspondence concerning this article should be addressed to Bahr Weiss, Box 512-GPC, Department of Psychology and Human Development, Peabody College, Vanderbilt University, Nashville, Tennessee 37203.
DEVELOPMENTAL DIFFERENCES IN DEPRESSION

Developmental group or whether scale scores should be devised and used to reflect various groups of symptoms. In addition, knowledge of CDI's relative structure across different groups (e.g., whether its internal structure is equivalent across children and adolescents) will indicate whether it is appropriate to compare or combine CDI scores from such groups, because the structure of a construct must be equivalent across groups if one is to combine or compare these groups (Byrne, Shavelson, & Muthen, 1989).

The structure of the CDI has been assessed using factor analysis on a number of occasions (e.g., Helsel & Matson, 1984; Hodges, Siegel, Mullins, & Griffin, 1983; Kovacs, 1985; Saylor, Finch, Spirito, & Bennett, 1984; Weiss & Weisz, 1988). However, several key issues appear to remain unaddressed. Although there may be a number of reasons to hypothesize that correlated factors or a general depression factor, or both, underlie the CDI, most investigations in this area have used an orthogonal varimax rotation. Such an approach precludes correlated factors and makes a general factor unlikely because the varimax technique tries to equalize the variance across factors (Mulaik, 1972). Thus, our knowledge of the internal structure of the CDI may be limited by the analytic techniques that have been used.

More important, only one study (Weiss & Weisz, 1988) has directly assessed the impact of developmental level on CDI structure, and it was based on relatively small samples (110 children and 139 adolescents). Although a wide age range of youth have served as subjects in the studies just noted, samples have been generally overlapping across studies in regard to age, making clear developmental comparisons between studies difficult. Further, besides differing in age of the subjects, these studies have also differed in a number of other characteristics, including the clinical status of the subjects, and various factor-analytic technical dimensions (e.g., factor-extraction method used). Thus, indirect assessment of the impact of developmental level through between-study comparisons appears problematic, and within-study comparisons are needed.

Accordingly, the goal of the present study was to assess and compare the factor structure of the CDI across developmental groups, using a large sample (N = 1,030) of clinic-referred children and adolescents. We felt that use of a clinic sample might indicate whether it is appropriate to compare or combine CDI scores from such groups, because the structure of a construct must be equivalent across groups if one is to combine or compare these groups (Byrne, Shavelson, & Muthen, 1989).

A total of 515 children (ages 8–12 years) and 768 adolescents (ages 13–16 years) seeking or receiving services at 19 different in- and outpatient mental health facilities in the states of Alabama, Louisiana, North Carolina, South Carolina, Ohio, and Virginia served as the initial pool of subjects for this study. To minimize the possibility that our results would be influenced by a priori conceptualizations regarding the structure of depression, we did not restrict our sample to children who had received an affective diagnosis.

The child sample consisted of 515 subjects (73%, male; 70%, White; 29%, Black); the initial adolescent sample contained 768 subjects (52%, male; 74%, White; 24%, Black). Because factor stability depends in part on the sample size (Humphreys & Igen, 1969; Guadagnoli & Velicer, 1988), subjects were dropped from the adolescent sample to equalize sample sizes. These subjects were dropped randomly, subject to two stipulations (a) that the percentage of boys be equivalent in the two samples, and (b) that the percentages of subjects from the different geographical sites be roughly equivalent in the child and adolescent samples. This also served to minimize the likelihood that actual developmental differences in the factor structure would be confounded with site or gender differences. Thus, both samples in the analyses reported below contained 515 subjects.

The overall level of depressive symptoms did not differ significantly across the two groups (the mean score on the CDI was 12.39, SD = 8.18, for adolescents, 12.89, SD = 8.46, for children). Across the age groups, the mean CDI score for girls was significantly higher than that for boys, 13.67 (SD = 8.81) versus 12.27 (SD = 8.11), respectively; F(1,1,026) = 5.78, p < .02. However, this main effect was qualified by a significant Age × Sex interaction, F(1, 1,026) = 6.32, p < .02; the effect of sex was significant for adolescents, F(1, 513) = 12.67, p < .0005, but not for children (p > .50). Adolescent girls produced higher (i.e., more depressed) CDI scores than did adolescent boys, 14.49 (SD = 8.84) versus 11.62 (SD = 7.80), respectively. Viewing this interaction from another direction, we found that the effect of age was significant for the boys only, F(1, 751) = 4.80, p < .03, with the older boys producing lower CDI scores.

Child Behavior Checklist (CBCL; Achenbach & Edelbrock, 1983) scores were available for 164 of the children and 142 of the adolescents. At the time of admission, the mean Internalizing problem score was 68.39 (96th percentile; SD = 9.77) for the adolescents and 68.29 (96th percentile; SD = 8.81) for the children. The Externalizing problem score was 68.82 (97th percentile; SD = 10.11) for the adolescents and 70.03 (98th percentile; SD = 9.96) for the children. Thus, in this sample, the adolescents as well as the children appeared to have been displaying substantial levels of both internalizing and externalizing problems.

Children's Depression Inventory

All children completed the CDI (Kovacs, 1980), the most widely used self-report measure of depression in children (Kazdin, 1987). As a result of concerns expressed by some clinic administrators and human subjects committees about suggesting suicide to clinic-referred children who might not have seriously considered it, some investigators in this study excluded CDI Item 9, which pertains to suicide. Conse-

1 Ages 12/13 were chosen to be the dividing point between children and adolescents because (a) this is the approximate age at which children transition from concrete to formal operational thinking (Piaget, 1970), (b) it is the approximate age at which changes associated with puberty begin for many children, and (c) in comparison to other age-group divisions satisfying the first two criteria, it maximized between-age-group CDI item-profile sums of squares, relative to within-group sums of squares. By maximizing within-age-group homogeneity, we felt we would maximize the likelihood that the children and adolescent groups would actually represent distinct groups.

Method

Subjects

A total of 515 children (ages 8–12 years) and 768 adolescents (ages 13–16 years) seeking or receiving services at 19 different in- and outpatient mental health facilities in the states of Alabama, Louisiana, North Carolina, South Carolina, Ohio, and Virginia served as the initial pool of subjects for this study. To minimize the possibility that our results would be influenced by a priori conceptualizations regarding the structure of depression, we did not restrict our sample to children who had received an affective diagnosis.

The child sample consisted of 515 subjects (73%, male; 70%, White; 29%, Black); the initial adolescent sample contained 768 subjects (52%, male; 74%, White; 24%, Black). Because factor stability depends in part on the sample size (Humphreys & Igen, 1969; Guadagnoli & Velicer, 1988), subjects were dropped from the adolescent sample to equalize sample sizes. These subjects were dropped randomly, subject to two stipulations (a) that the percentage of boys be equivalent in the two samples, and (b) that the percentages of subjects from the different geographical sites be roughly equivalent in the child and adolescent samples. This also served to minimize the likelihood that actual developmental differences in the factor structure would be confounded with site or gender differences. Thus, both samples in the analyses reported below contained 515 subjects.

The overall level of depressive symptoms did not differ significantly across the two groups (the mean score on the CDI was 12.39, SD = 8.18, for adolescents, 12.89, SD = 8.46, for children). Across the age groups, the mean CDI score for girls was significantly higher than that for boys, 13.67 (SD = 8.81) versus 12.27 (SD = 8.11), respectively; F(1,1,026) = 5.78, p < .02. However, this main effect was qualified by a significant Age × Sex interaction, F(1, 1,026) = 6.32, p < .02; the effect of sex was significant for adolescents, F(1, 513) = 12.67, p < .0005, but not for children (p > .50). Adolescent girls produced higher (i.e., more depressed) CDI scores than did adolescent boys, 14.49 (SD = 8.84) versus 11.62 (SD = 7.80), respectively. Viewing this interaction from another direction, we found that the effect of age was significant for the boys only, F(1, 751) = 4.80, p < .03, with the older boys producing lower CDI scores.

Child Behavior Checklist (CBCL; Achenbach & Edelbrock, 1983) scores were available for 164 of the children and 142 of the adolescents. At the time of admission, the mean Internalizing problem score was 68.39 (96th percentile; SD = 9.77) for the adolescents and 68.29 (96th percentile; SD = 8.81) for the children. The Externalizing problem score was 68.82 (97th percentile; SD = 10.11) for the adolescents and 70.03 (98th percentile; SD = 9.96) for the children. Thus, in this sample, the adolescents as well as the children appeared to have been displaying substantial levels of both internalizing and externalizing problems.

Children's Depression Inventory

All children completed the CDI (Kovacs, 1980), the most widely used self-report measure of depression in children (Kazdin, 1987). As a result of concerns expressed by some clinic administrators and human subjects committees about suggesting suicide to clinic-referred children who might not have seriously considered it, some investigators in this study excluded CDI Item 9, which pertains to suicide. Conse-

1 Ages 12/13 were chosen to be the dividing point between children and adolescents because (a) this is the approximate age at which children transition from concrete to formal operational thinking (Piaget, 1970), (b) it is the approximate age at which changes associated with puberty begin for many children, and (c) in comparison to other age-group divisions satisfying the first two criteria, it maximized between-age-group CDI item-profile sums of squares, relative to within-group sums of squares. By maximizing within-age-group homogeneity, we felt we would maximize the likelihood that the children and adolescent groups would actually represent distinct groups.
quently, it was available only for 65% of the children and 68% of the adolescents. Because factor analysis requires that subjects with missing data be dropped from the sample, this item was not included in the factor analysis. However, its relation to the factors was assessed by regressing factor scores on the item (see below).

Procedure
The data on which this study is based were obtained through the pooling of data originally collected by different investigators (Carey, Faulstich, Gresham, Ruggiero, & Enyart, 1987; Nelson, Politano, Finch, Wendel, & Mayhall, 1987; Saylor, Finch, Spirito, & Bennett, 1984; Weiss & Weisz, 1988; Weisz et al., 1989). Because the data were collected by different investigators, there was no single collection procedure. However, all CDIs were collected within 2 weeks of intake or admission.

Results
Reliability Checks
We first assessed the internal consistency of the CDI, separately for the children and the adolescents. Coefficient alpha (Cronbach, 1951) was high for both groups (.86 for the children; .88 for the adolescents). Test-retest data were available for 132 of the adolescents and 120 of the children; average time between administrations was 3.61 months for the adolescents and 4.79 months for the children. Despite the relatively lengthy test-retest period, the Pearson product-moment correlation for total CDI score across administrations was .56 for the adolescents and .54 for the children. Because subjects received treatment during the period between CDI administrations, these correlations probably should be viewed as lower bound estimates of reliability.

Factor Analysis
To assess age-related differences in symptom patterns, two factor analyses were performed—one on the child data and one on the adolescent data. Kaiser's Measure of Sampling Adequacy (MSA; Cerny & Kaiser, 1977) statistic was in the "meritorious" range for the adolescents as well as the children (MSA = .88 for both groups). This suggests that the data were adequate and appropriate for factor analysis (i.e., that the sample size and "density" of the correlation matrix were adequate).

We used two strategies to determine the appropriate number of factors. First, we applied the parallel analysis technique (Gorsuch, 1983; Humphreys & Ilen, 1969), wherein we compared the eigenvalues derived from the child and adolescent data with eigenvalues derived from a series of random correlation matrices (i.e., zero correlations plus random error). Eigenvalues from our actual data that were larger than the random eigenvalues were considered to represent actual factors; those data-based eigenvalues less than the corresponding random eigenvalues were considered random factors.

We also applied a second rule to determine the appropriate number of factors, because we expected that the relatively large sizes of our samples would result in some factors being deficient in terms of interpretability and simple structure, although significant in the sense that they were larger than their corresponding random roots. Consequently, solutions producing trivial factors (i.e., factors without at least two unique loadings above .30; Gorsuch, 1983) were rejected. Application of these two rules resulted in five-factor solutions for both the adolescents and the children. Simple structure and interpretability across solutions of varying number of factors (and rotations; discussed next) provided further evidence that the five-factor solutions were optimal.

Factors were extracted using the maximum likelihood method. As just noted, we selected an oblique rotation to allow for, but not force, correlated factors. A promax rotation (Mulaik, 1972) using a varimax target (k = 3) was selected for both the child and adolescent data, because it best satisfied simple structure requirements and produced the most interpretable factors. It should be noted, however, that solutions generated by other oblique rotations were similar to those generated by this promax/varimax rotation. The factor pattern, which produces smaller loadings than the factor structure because it controls for indirect relations (which occur because of correlated factors) between items and factors, is reported in Table 1: Table 2 reports interfactor correlations. Overall, 33% of the total variance in the adolescent CDI data was accounted for by the factors, whereas the factors accounted for 32% of the variance in the child data. Thus, to an equivalent degree for the children and adolescents, a sizable portion of the variance in the CDI items was not explained by the factors.

Adolescent Factors
The five adolescent factors can be described as follows:

1. Negative Affect (sad, upset) With Somatic Concerns. The first adolescent factor appears to reflect affective problems, such as feeling upset, sad, and lonely, with the three largest loadings on the items I feel like crying every day, I am sad all the time, and Things bother me all the time. A second cluster of items appears to involve somatic complaints, with loadings on I worry about aches and pains all the time, Most days I do not feel like eating, I have trouble sleeping at night; and I am tired all the time.

2. Negative Self-Image. Factor 2 appears to be a cognitive factor, involving negative perceptions of the self, with loadings on items reflecting a belief that one is a "bad" person (All bad things are my fault; I am bad all the time; I can never be as good as other kids), and on an item reflecting general negative feelings towards oneself (I hate myself).

3. Anhedonic, Socially Isolated. Factor 3 apparently involves feelings of social isolation (I do not want to be with people at all; I do not have any friends), as well as anhedonia (Nothing is fun at all; I never have fun at school).

4. Externalizing Problems. Factor 4 appears to reflect a perception that one is noncompliant (I never do what I am told), aggressive (I get into fights all the time), and oppositional (I am bad all the time).

5. School Problems. This factor appears to reflect perceptions that one is having problems at school: The three highest-loading items were I have to push myself to do my schoolwork; I never have fun at school; and I do badly in (school) subjects I used to be good in.
ing every day: Things bother me all the time whereas the child did not) rather than have any friends, pears to involve loneliness (i.e., the child factor included and pains all the time). The first child factor, however, differed somatic concerns (/ and a cluster of items involving negative affect (e.g., feel-

Table 1

<table>
<thead>
<tr>
<th>CDI item</th>
<th>1:1</th>
<th>1:2</th>
<th>1:3</th>
<th>1:4</th>
<th>1:5</th>
<th>h²</th>
<th>1:1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Frequent sadness</td>
<td>52</td>
<td>28</td>
<td>11</td>
<td>09</td>
<td>09</td>
<td>57</td>
<td>61</td>
</tr>
<tr>
<td>2. Hopelessness</td>
<td>15</td>
<td>31</td>
<td>17</td>
<td>02</td>
<td>09</td>
<td>32</td>
<td>48</td>
</tr>
<tr>
<td>3. Can’t do anything right/incompetent</td>
<td>01</td>
<td>31</td>
<td>34</td>
<td>14</td>
<td>04</td>
<td>36</td>
<td>48</td>
</tr>
<tr>
<td>4. Anhedonia</td>
<td>10</td>
<td>00</td>
<td>48</td>
<td>07</td>
<td>00</td>
<td>33</td>
<td>44</td>
</tr>
<tr>
<td>5. Sees self as “bad”</td>
<td>-07</td>
<td>35</td>
<td>-07</td>
<td>41</td>
<td>07</td>
<td>34</td>
<td>26</td>
</tr>
<tr>
<td>6. Worries that bad things are going to happen to self</td>
<td>32</td>
<td>18</td>
<td>03</td>
<td>15</td>
<td>01</td>
<td>28</td>
<td>44</td>
</tr>
<tr>
<td>7. Self-hated</td>
<td>10</td>
<td>47</td>
<td>14</td>
<td>00</td>
<td>02</td>
<td>40</td>
<td>52</td>
</tr>
<tr>
<td>8. Guilt</td>
<td>-01</td>
<td>60</td>
<td>-20</td>
<td>25</td>
<td>02</td>
<td>41</td>
<td>34</td>
</tr>
<tr>
<td>10. Frequent crying</td>
<td>71</td>
<td>09</td>
<td>-12</td>
<td>-14</td>
<td>-05</td>
<td>50</td>
<td>47</td>
</tr>
<tr>
<td>11. Bothered by things</td>
<td>66</td>
<td>05</td>
<td>01</td>
<td>18</td>
<td>-08</td>
<td>54</td>
<td>57</td>
</tr>
<tr>
<td>12. Doesn’t want to be with people</td>
<td>-02</td>
<td>03</td>
<td>44</td>
<td>04</td>
<td>-04</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>13. Indecisive</td>
<td>06</td>
<td>31</td>
<td>01</td>
<td>04</td>
<td>26</td>
<td>27</td>
<td>38</td>
</tr>
<tr>
<td>14. Feels ugly</td>
<td>01</td>
<td>34</td>
<td>16</td>
<td>00</td>
<td>01</td>
<td>22</td>
<td>37</td>
</tr>
<tr>
<td>15. School motivation problems</td>
<td>02</td>
<td>12</td>
<td>-11</td>
<td>11</td>
<td>47</td>
<td>29</td>
<td>23</td>
</tr>
<tr>
<td>16. Trouble sleeping</td>
<td>45</td>
<td>00</td>
<td>-04</td>
<td>-02</td>
<td>24</td>
<td>29</td>
<td>41</td>
</tr>
<tr>
<td>17. Fatigue</td>
<td>38</td>
<td>00</td>
<td>15</td>
<td>08</td>
<td>06</td>
<td>28</td>
<td>44</td>
</tr>
<tr>
<td>18. Poor appetite</td>
<td>45</td>
<td>-14</td>
<td>-07</td>
<td>00</td>
<td>27</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>19. Concerned about aches and pains</td>
<td>38</td>
<td>-16</td>
<td>11</td>
<td>15</td>
<td>06</td>
<td>20</td>
<td>32</td>
</tr>
<tr>
<td>20. Feels lonely</td>
<td>40</td>
<td>14</td>
<td>20</td>
<td>-05</td>
<td>03</td>
<td>41</td>
<td>55</td>
</tr>
<tr>
<td>21. Doesn’t have fun at school</td>
<td>00</td>
<td>04</td>
<td>34</td>
<td>-05</td>
<td>35</td>
<td>33</td>
<td>37</td>
</tr>
<tr>
<td>22. Doesn’t have friends</td>
<td>00</td>
<td>00</td>
<td>53</td>
<td>00</td>
<td>00</td>
<td>29</td>
<td>36</td>
</tr>
<tr>
<td>23. School failure</td>
<td>07</td>
<td>04</td>
<td>08</td>
<td>17</td>
<td>33</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>24. Feels inferior to other kids</td>
<td>-04</td>
<td>35</td>
<td>07</td>
<td>-10</td>
<td>29</td>
<td>26</td>
<td>34</td>
</tr>
<tr>
<td>25. Feels unloved</td>
<td>16</td>
<td>28</td>
<td>20</td>
<td>-14</td>
<td>04</td>
<td>29</td>
<td>45</td>
</tr>
<tr>
<td>26. Noncompliant</td>
<td>03</td>
<td>00</td>
<td>03</td>
<td>54</td>
<td>03</td>
<td>32</td>
<td>18</td>
</tr>
<tr>
<td>27. Frequency gets into fights</td>
<td>01</td>
<td>-01</td>
<td>31</td>
<td>46</td>
<td>00</td>
<td>36</td>
<td>32</td>
</tr>
</tbody>
</table>

Variance explained:
- Ignoring other factors: 4.40, 3.86, 3.53, 1.50, 1.78
- Eliminating other factors: 1.33, 1.00, 0.87, 0.90, 0.70
- Total: 8.58 (33%), 8.32 (32%)

Child Factors

The five child factors can be described as follows:

1. Negative Affect (sad, lonely). With Somatic Concerns. The first child factor, like the first adolescent factor, appears to comprise a cluster of items involving negative affect (e.g., feelings of sadness and loneliness, as reflected by items I am sad all the time: I feel alone all the time), and a cluster of items involving somatic concerns (I am tired all the time; I worry about aches and pains all the time). The first child factor, however, differed from its adolescent counterpart in that the negative affect appears to involve loneliness (i.e., the child factor included I do not have any friends, whereas the adolescent did not) rather than feeling upset (i.e., the adolescent factor included I feel like crying every day; Things bother me all the time whereas the child factor did not).

2. Externalizing Problems and Negative Self-Image. The second factor for the children appears to involve two clusters of items. The first cluster involves oppositional, aggressive behavior (I never do what I am told; I get into fights all the time; I am bad all the time). The second cluster appears to involve a negative self-image, focusing particularly on feelings of guilt or self-blame (All bad things are my fault; I do everything wrong).

3. School Problems. This factor appears to reflect perceptions that one is having problems at school: The three highest-loading items were I have to push myself to do my schoolwork; I never have fun at school; and I do badly in (school) subjects I used to be good in.

4. Unloved. This factor apparently involves feelings that one is unloved by others (Nobody really loves me) as well as by oneself (I hate myself).

5. Negative Affect (upset). Like the first child factor, this fac-
tor appears to involve affective problems. However, in contrast to the first factor, which involves sad and lonely affect, this factor appears to involve feeling upset: The two largest loadings for this factor were on I feel like crying every day and Things bother me all the time. Thus, it appears that sad and lonely affect are somewhat distinct from feeling upset in the children, because they formed separate factors. The third largest loading on this factor was on sleep problems, which suggests that sleep difficulties may be related to feeling upset.

Second-Order Factor Analysis

The high internal consistency in both age groups suggests that a general factor might underlie these first-order factors. On the other hand, the nature of the first-order factors suggests the possibility of second-order internalizing and externalizing factors. It is also possible that no clearcut second-order factors existed in these data. To determine the relative validity of these two hypotheses, we performed second-order factor analyses, based on the first-order interfactor correlations, shown in Table 2.

Preliminary analyses, including the scree test, indicated that the most appropriate solution for both the adolescent and child data involved a single factor. For the adolescents, the second eigenvalue was only .19; for the children, it was .05. For the children, all first-order factors loaded strongly ($\lambda > 0.45$) on the general factor (see Table 2); for the adolescents, however, Factor IV (Externalizing Problems) did not load ($\lambda < 0.25$) on the general factor. This suggested that the externalizing-behavior component was less involved in adolescent than in childhood depression. This impression was substantiated when we computed the CDI item loadings for the second-order factors (Gorsuch, 1983): All three of the CDI externalizing items (Items 5, 26, and 27) loaded more heavily on the child general factor than on the adolescent general factor (see Table 1).

Comparison of Child and Adolescent Solutions

Intergroup factor correlations. One approach to evaluating the similarity of factor solutions derived from two different groups is to compute correlations between the factors produced by the two solutions (Gorsuch, 1983). In essence, this is achieved by (a) obtaining the factor-scoring matrix for each group (i.e., for the children and for the adolescents); (b) for each subject, computing two factor scores for each factor (i.e., Factors 1-5), one based on the child scoring matrix, one based on the adolescent scoring matrix; and (c) correlating these factor scores. Thus, the correlations (reported in Table 3) reflect the degree of similarity between factors, across groups: The higher the correlation between an adolescent and child factor, the more similar the two factors.

For instance, the adolescent and child “school concerns” factors (Factors 5 and 3, respectively) were very highly correlated, suggesting that these two factors were quite similar; inspection of the loadings substantiates this impression. Likewise, the adolescent and child “externalizing” factors (Factors 4 and 2, respectively) were correlated highly, although not as highly as the school concerns factors; in fact, the child “externalizing” factor appears to also contain elements of adolescent Factor 2 (Negative Self-View).

The correlation matrix presented in Table 3 may be used to describe relations between sets of factors. For instance, it suggests that, taken together, Child Factors 1 and 5 are roughly equivalent to Adolescent Factors 1 and 3 and that the areas of negative affect that these factors measure (i.e., sadness, loneliness, and feeling upset) were split differently for the children and adolescents. For the children, sadness co-occurred with loneliness in Factor 1, whereas feeling upset was represented by Factor 5. In contrast, for the adolescents in Factor 1 sadness co-occurred with feeling upset, whereas feeling social isolation or lonely was represented by Factor 3. Thus, in the children, sadness apparently was associated with loneliness, whereas in the adolescents it was associated with feeling upset. In general, with the exception of the school concerns factors, most factors correlated with more than one factor in the other solution, which suggests that although there was a fair degree of similarity across the children and adolescents, there were also differences.

Inspection of communality estimates. We next compared the communality estimates, which represent the portion of variance of each CDI item accounted for by the factors, for the adolescents and children (see Table 1). In this analysis, each CDI item contributed one pair of communality estimates (one from the children and one from the adolescents); these pairs were then correlated across the 26 CDI items. Thus, this correlation achieved by (a) obtaining the factor-scoring matrix for each group (i.e., for the children and for the adolescents); (b) for each subject, computing two factor scores for each factor (i.e., Factors 1-5), one based on the child scoring matrix, one based on the adolescent scoring matrix; and (c) correlating these factor scores. Thus, the correlations (reported in Table 3) reflect the degree of similarity between factors, across groups: The higher the correlation between an adolescent and child factor, the more similar the two factors.

Intergroup Correlations and Second-Order General Factor Loadings For Children and Adolescents

<table>
<thead>
<tr>
<th>Factor</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>GFL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.55</td>
<td>.35</td>
<td>.28</td>
<td>.78</td>
<td>—</td>
<td>.47</td>
</tr>
<tr>
<td>2</td>
<td>.55</td>
<td>.44</td>
<td>.23</td>
<td>.78</td>
<td>—</td>
<td>.65</td>
</tr>
<tr>
<td>3</td>
<td>.55</td>
<td>.44</td>
<td>.23</td>
<td>.78</td>
<td>—</td>
<td>.65</td>
</tr>
<tr>
<td>4</td>
<td>.11</td>
<td>.20</td>
<td>.16</td>
<td>.45</td>
<td>.53</td>
<td>.78</td>
</tr>
<tr>
<td>5</td>
<td>.21</td>
<td>.27</td>
<td>.31</td>
<td>.22</td>
<td>—</td>
<td>.53</td>
</tr>
</tbody>
</table>

Note: Intergroup correlations for children are above the diagonal, correlations for adolescents are below the diagonal. GFL = Loading on second-order general factor.
DEVELOPMENTAL DIFFERENCES IN DEPRESSION

Table 3
Correlations Between Adolescent and Child Factors

<table>
<thead>
<tr>
<th>Child factor</th>
<th>Adolescent factor</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.78</td>
<td>.55</td>
<td>.84</td>
<td>.37</td>
<td>.32</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.44</td>
<td>.74</td>
<td>.48</td>
<td>.80</td>
<td>.50</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.37</td>
<td>.56</td>
<td>.48</td>
<td>.44</td>
<td>.92</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.63</td>
<td>.85</td>
<td>.66</td>
<td>.34</td>
<td>.49</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>.87</td>
<td>.71</td>
<td>.43</td>
<td>.13</td>
<td>.27</td>
<td></td>
</tr>
</tbody>
</table>

Note. r > 0.75 are in italics.

represents the extent to which the ordering of the communality estimates was the same across the two groups (i.e., the extent to which the CDI items were similarly involved in depression across the two groups). The correlation between the adolescent and child communality estimates was high (r = .71, p < .00001), with a mean difference between the adolescent and child communality estimates of 0.01, t(26) = .64, p > .50. However, whereas there were six CDI items relatively uninvolved in overall CDI depression (i.e., having a communality estimate as well as all first-order loadings less than .30) for the children, there was only one such item for the adolescents. In sum, there was a general equivalence across age groups in the extent to which individual CDI items were involved in depression, although it does appear that depression as measured by the CDI was somewhat less symptomatically complex for the children (i.e., fewer CDI items were involved in the factor pattern).

Goodness of fit. Because it is possible only to directly compare factor solutions that are hierarchical (Byrne, 1989), and because the child and adolescent solutions do not represent hierarchical models, it was not possible to directly compare their fit. Instead, we attempted to determine how well the child-factor solution fitted the adolescent data and how well the adolescent-factor solution fitted the child data. Toward this end, we first computed goodness-of-fit indices for the just-mentioned solutions and then fitted each group's data to the other group's parameter estimates, again computing the fit indices. Thus, we obtained estimates of how well the child-factor solution explained the adolescent data and vice versa. Some decrease from the original level in the goodness-of-fit indices is inevitable with this approach, because the solution for each group fitted to its own parameter estimates involves capitalization on chance. However, a decrease of the fit indices into the inadequate range would suggest that the child solution does not adequately explain the adolescent data and vice versa (i.e., the two solutions are different).

When the adolescent data were fitted to their own parameter estimates (i.e., factor-pattern loadings, interfactor correlations, and communality estimates) the goodness-of-fit indicator (GFI), a measure of the relative amount of variance and covariance accounted for by the model (Cole, 1987), equaled .959, well above the .90 marker for a good fit. The root mean residual (RMR) was .027, within the .05 level considered to be the maximum RMR for adequately fitting models. When the adolescent data were fitted to the parameter estimates derived from the child data, the GFI dropped below the .90 level to .885, and the RMR increased to .084. Similarly, when the child data were fitted to their own parameter estimates, the GFI was .956 and the RMR was .029; when fitted to the parameter estimates derived from the adolescent data, the GFI decreased to .872 and the RMR increased to .083. In sum, these comparisons suggest that there were real differences between the child and adolescent factor patterns.

Relation Between Suicide Item and Factors

As noted previously, the CDI item pertaining to suicidal ideation was not included in the factor analysis because it was available for only a subsample of the subjects. To determine the relation between this item and the factors, first-order factor scores were regressed on the suicide item, and standardized betas were computed; the relation between the second-order general factor and the suicide item was assessed separately. We first, however, assessed whether inclusion of the suicide item influenced subjects' responses to the other CDI items. We compared CDI total score (excluding Item 9) for subjects who received the CDI suicide item with the total score of subjects who did not receive the item. Neither the adolescents' nor the children's scores were significantly influenced by inclusion of the item, F(1, 513) = .74, p > .35; F(1, 513) = .23, p > .50, respectively.

We then regressed the factor scores on the suicide item. A Bonferroni correction was used to control for the number of tests, resulting in an adjusted alpha of .004. For the adolescents, Factor 1 (Negative Affect With Somatic Concerns) showed a significant relation with the suicide item, β = 0.25, F(1, 345) = 9.65, p < 0.004, as did the general factor, β = 0.35, F(1, 349) = 49.60, p < 0.0001. For the children, Factor 5 (Unloved) showed a significant relation with the suicide item, β = 0.24, F(1, 327) = 9.16, p < 0.004, as did the general factor, β = 0.26, F(1, 331) = 24.93, p < 0.0001.

Discussion

In this study, we sought to determine whether the factor structure of the CDI was different for children and adolescents. Our results suggest that it was. However, our results also suggest that the extent of the differences was modest: The impact of age on the goodness-of-fit indices, as well as on the more subjective developmental comparisons, was moderate. Furthermore, certain similarities across the two age groups were evident. Both groups produced five-factor solutions with a virtually identical "school" factor and several other moderately similar first-order factors. In addition, we found a single, second-order general depression factor for both age groups, although the items loading on this factor differed somewhat across groups. Finally, the amount of variance accounted for by the factor model was relatively modest for both groups; this suggests that, at least in our clinic-referred samples, much of what the CDI measures is unrelated to its underlying factor structure (i.e., much of what each item measures is unique to the item).

Perhaps the most notable developmental difference in our sample was the extent to which externalizing behavior was a part of CDI depression. Inspection of the factor-pattern loadings suggests that in the children negative cognitions about the
self appeared closely tied to self-reported misbehavior (i.e., they
loaded on the same factor). In adolescents, on the other hand,
self-cognitions were relatively independent of self-reported mis-
behavior, as was affect. This suggests that for the adolescents,
externalizing problems were less a part of CDI depression than
for the children.

The adolescents also appeared to differ from the children in
the number of CDI items involved in the factor pattern. Whereas
there was only one item relatively uninvolved in overall
CDI depression for the adolescents, there were six such items
for the children. Such differences could make developmental
comparisons problematic, in that such comparisons would in-
volve items that apparently have little to do with depression, for
one group or the other. This suggests that it might be useful,
when making developmental comparisons, to compute a "core
symptom" score using only items loading on the general factor
for both the children and adolescents. However, in our samples
such a score proved to be highly correlated with the conven-
tional total score ($r = 0.97$); thus, such a core symptom score
does not appear to have much practical value.

In considering the findings just reported, it is important to
recall that the internal consistency and test-retest reliability
estimates were virtually identical for the children and adoles-
cents. Thus, it is unlikely that the child–adolescent group com-
parisons structured here were biased by age-related differences
in the reliability of the CDI. There are, however, several limita-
tions to the present study that should be considered in inter-
preting the results. First, deletion of the CDI suicide item, in
response to clinic administrators' concerns, may have in-
fluenced subjects' response patterns. Although the total score
for subjects who received the item did not differ significantly
from that of subjects who did not receive the item, it is possible
that inclusion of the item influenced responding in some com-
plex way not reflected by the total score.

Because the focus of this study was on developmental differ-
ences, we chose to remove the potential effect of sex, by match-
ing the gender composition of the adolescent sample to that of
the child sample, and then collapsing across boys and girls
within each age group. Consequently, the results for our adoles-
cent sample may not be representative of what one would find
with an adolescent sample that had not been restricted in this
manner. In regard to developmental differences, however, it is
likely that if one did not match, one would find larger differ-
ences between the children and adolescents, in so far as there
were an effect for gender on the factor pattern.

One final caveat should be noted. Because our results were
based on clinic populations, it is possible that the between-
group differences we found may at least in part be a result of
differences in referral patterns for children and adolescents,
rather than representing true developmental differences. That
is, the differences between our child and adolescent samples
may have in part resulted from different types of children and
adolescents being referred to clinics. Our sample was obtained
from 19 mental health sites; however, so idiosyncratic referral
patterns of any particular site are not likely to have had too great
an impact on the results. Further, both the adolescent and child
groups showed moderate-to-high levels of internalizing and ex-
ternalizing behavior problems, which suggests some rough
equivalence for type of referral problem. Still, more specific
information (e.g., diagnoses, narrow-band factors) might have
revealed differences in our samples. Such information would
also help to more clearly define the generalizability of our re-

Although it would be useful to compare our findings with
those of other studies, most relevant investigations have used a
subject sample with an age range sufficiently different from
ours to preclude comparisons. The one apparent exception to
this is Hodges et al. (1983), who used clinic and nonclinic sam-
ple of children aged 7 to 12 years. None of the CDI factors
produced by Hodges et al. (1983) clinic sample appear to paral-
lel to any real degree the factors found in our child sample.
Although these investigators did find a "cognitive, negative self-
view" factor, a number of the items that loaded on this factor
did not load on our Externalizing Problems/Negative Self-
image factor. Nor did Hodges et al.'s (1983) cognitive factor con-
tain the externalizing behavior component that was a major
part of our child cognitive factor. Other factors produced by the
Hodges et al. (1983) clinic sample appeared at least as equally
dissimilar from the factors found in the present study; the non-
clinic sample produced a two-factor solution, which appeared
even more dissimilar to our child sample results. Overall, it
appears that our children were at least as similar to our adoles-
cents as they were to Hodges et al.'s clinic sample. This may have
been a function of different analytic decisions made by these
investigators (e.g., principal-factor analysis followed by an or-
thogonal rotation, in contrast to our maximum-likelihood fac-
tor analysis followed by an oblique rotation), or sample charac-
teristics. These between-study differences highlight the impor-
tance of within-study comparisons when assessing develop-
mental effects and the need for replication.

Finally, it is worthwhile to consider whether our findings are
applicable to nonclinic samples. Previous research focusing on
single age groups suggests that the CDI factor pattern may not
be the same for clinic and nonclinic children (Hodges et al.,
1983; Kovacs, 1985), although not all findings (e.g., Carey et al.,
1987) in this area have been consistent. Thus, whether our re-
results may be applied to nonclinic youth remains to be deter-
mined by future research.

References

ior Checklist and Revised Child Behavior Profile. Burlington, VT:
Queen City Printers.

Depression Inventory. In P. Pichot (Ed.), Psychological measure-
ments in psychopharmacology (pp. 151-169). Paris, France: Karger,
Basel.

ties of the Beck Depression Inventory: Twenty-five years of evalu-
ation. Clinical Psychology Review, 8, 77-100.

Byrne, B. M. (1989). A primer of LISREL: Basic applications and pro-
gramming for confirmatory factor analysis models. New York:
Springer-Verlag.

Byrne, B. M., Shavelson, R. J., & Muthen, B. (1989). Testing for equiva-
ience of factor covariance and mean structures: The issue of partial

Carey, M. P., Faulistich, M. E., Gresham, F. M., Ruggiero, L., & Enyart,

Received January 17, 1990
Revision received April 29, 1990
Accepted May 10, 1990

Harvey Appointed Editor of *Contemporary Psychology*, 1992–1997

The Publications and Communications Board of the American Psychological Association announces the appointment of John H. Harvey, University of Iowa, as editor of *Contemporary Psychology* for a 6-year term beginning in 1992.

Publishers should note that books should not be sent to Harvey. Publishers should continue to send two copies of books to be considered for review plus notices of publication to

PsycINFO Services Department, APA
Attn: Contemporary Psychology Processing
1400 North Uhle Street
Arlington, Virginia 22201

Please note that all reviews are written by invitation.